ShrFP-Tree: An Efficient Tree Structure for Mining Share-Frequent Patterns
نویسندگان
چکیده
Share-frequent pattern mining discovers more useful and realistic knowledge from database compared to the traditional frequent pattern mining by considering the non-binary frequency values of items in transactions. Therefore, recently share-frequent pattern mining problem becomes a very important research issue in data mining and knowledge discovery. Existing algorithms of share-frequent pattern mining are based on the level-wise candidate set generation-andtest methodology. As a result, they need several database scans and generate-and-test a huge number of candidate patterns. Moreover, their numbers of database scans are dependent on the maximum length of the candidate patterns. In this paper, we propose a novel tree structure ShrFP-Tree (Share-frequent pattern tree) for share-frequent pattern mining. It exploits a pattern growth mining approach to avoid the level-wise candidate set generation-and-test problem and huge number of candidate generation. Its number of database scans is totally independent of the maximum length of the candidate patterns. It needs maximum three database scans to calculate the complete set of share-frequent patterns. Extensive performance analyses show that our approach is very efficient for share-frequent pattern mining and it outperforms the existing most efficient algorithms.
منابع مشابه
Frequent Patterns Mining over Data Stream Using an Efficient Tree Structure
Mining frequent patterns over data streams is an interesting problem due to its wide application area. In this study, a novel method for sliding window frequent patterns mining over data streams is proposed. This method utilizes a compressed and memory efficient tree data structure to store and to maintain sliding window transactions. The method dynamically reconstructs and compresses tree data...
متن کاملDiscovering Periodic-Frequent Patterns in Transactional Databases
Since mining frequent patterns from transactional databases involves an exponential mining space and generates a huge number of patterns, efficient discovery of user-interest-based frequent pattern set becomes the first priority for a mining algorithm. In many real-world scenarios it is often sufficient to mine a small interesting representative subset of frequent patterns. Temporal periodicity...
متن کاملEfficient Weighted Frequent Patterns Mining over Evolving Dataset
Weighted frequent pattern mining is suggested to find out more important frequent pattern by considering different weights of each item. Weighted Frequent Patterns are generated in weight ascending and frequency descending order by using prefix tree structure. These generated weighted frequent patterns are applied to maximal frequent item set mining algorithm. Maximal frequent pattern mining ca...
متن کاملEfficient Frequent Pattern Mining Based on a Condensed Tree Structure
In this paper, we present an efficient tree structure and its associated algorithm for discovery of frequent patterns from a large data set. We demonstrate the effectiveness of our algorithm and performance improvement over the existing approach CATS which is one of the fastest frequent pattern mining algorithms known to date.
متن کاملA Numerical Method for Frequent Patterns Mining
Frequent pattern mining is one of the active research themes in data mining. It plays an important role in all data mining tasks such as clustering, classification, prediction, and association analysis. Identifying all frequent patterns is the most time consuming process due to a massive number of patterns generated. A reasonable solution is identifying maximal frequent patterns which form the ...
متن کامل